10,552 research outputs found

    Bragg spectroscopy of trapped one dimensional strongly interacting bosons in optical lattices: Probing the cake-structure

    Full text link
    We study Bragg spectroscopy of strongly interacting one dimensional bosons loaded in an optical lattice plus an additional parabolic potential. We calculate the dynamic structure factor by using Monte Carlo simulations for the Bose-Hubbard Hamiltonian, exact diagonalizations and the results of a recently introduced effective fermionization (EF) model. We find that, due to the system's inhomogeneity, the excitation spectrum exhibits a multi-branched structure, whose origin is related to the presence of superfluid regions with different densities in the atomic distribution. We thus suggest that Bragg spectroscopy in the linear regime can be used as an experimental tool to unveil the shell structure of alternating Mott insulator and superfluid phases characteristic of trapped bosons.Comment: 7 pages, 4 figure

    Macroscopic superposition states in rotating ring lattices

    Full text link
    We investigate the effects of rotation on one-dimensional ultracold bosons confined to optical ring lattices. First, we show that there exists a critical rotation frequency at which the ground state of a weakly-interacting and integer-filled atomic gas is fragmented into a macroscopic superposition state with different circulation. Second, we point out several advantages of using slightly non-uniform ring lattices. Finally, we demonstrate that different quasi-momentum states can be distinguished in time-of-flight absorption imaging and propose to probe correlations via the many-body oscillations induced by a sudden change in the rotation frequency.Comment: 8 pages, 4 figures; PQE-2008 conference proceedings; minor correction

    On the Outage Probability of the Full-Duplex Interference-Limited Relay Channel

    Get PDF
    In this paper, we study the performance, in terms of the asymptotic error probability, of a user which communicates with a destination with the aid of a full-duplex in-band relay. We consider that the network is interference-limited, and interfering users are distributed as a Poisson point process. In this case, the asymptotic error probability is upper bounded by the outage probability (OP). We investigate the outage behavior for well-known cooperative schemes, namely, decode-and-forward (DF) and compress-and-forward (CF) considering fading and path loss. For DF we determine the exact OP and develop upper bounds which are tight in typical operating conditions. Also, we find the correlation coefficient between source and relay signals which minimizes the OP when the density of interferers is small. For CF, the achievable rates are determined by the spatial correlation of the interferences, and a straightforward analysis isn't possible. To handle this issue, we show the rate with correlated noises is at most one bit worse than with uncorrelated noises, and thus find an upper bound on the performance of CF. These results are useful to evaluate the performance and to optimize relaying schemes in the context of full-duplex wireless networks.Comment: 30 pages, 4 figures. Final version. To appear in IEEE JSAC Special Issue on Full-duplex Wireless Communications and Networks, 201
    corecore